On the efficiency of biased sampling of the multiple state path ensemble.
نویسندگان
چکیده
Developed for complex systems undergoing rare events involving many (meta)stable states, the multiple state transition path sampling aims to sample from an extended path ensemble including all possible trajectories between any pair of (meta)stable states. The key issue for an efficient sampling of the path space in this extended ensemble is sufficient switching between different types of trajectories. When some transitions are much more likely than others the collective sampling of the different path types can become difficult. Here we introduce a Wang-Landau based biasing approach to improve the sampling. We find that the biasing of the multiple state path ensemble does not influence the switching behavior, but does improve the sampling and thus the quality of the individual path ensembles.
منابع مشابه
Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملWised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملADABOOST ENSEMBLE ALGORITHMS FOR BREAST CANCER CLASSIFICATION
With an advance in technologies, different tumor features have been collected for Breast Cancer (BC) diagnosis, processing of dealing with large data set suffers some challenges which include high storage capacity and time require for accessing and processing. The objective of this paper is to classify BC based on the extracted tumor features. To extract useful information and diagnose the tumo...
متن کاملA High-Performance Model based on Ensembles for Twitter Sentiment Classification
Background and Objectives: Twitter Sentiment Classification is one of the most popular fields in information retrieval and text mining. Millions of people of the world intensity use social networks like Twitter. It supports users to publish tweets to tell what they are thinking about topics. There are numerous web sites built on the Internet presenting Twitter. The user can enter a sentiment ta...
متن کاملThe effects of misclassification errors on multiple deferred state attribute sampling plan
Multiple deferred state (MDS) sampling plan by attribute in which current lot and future lots information is utilised on sentencing submitted lot, is constructed under the assumption of perfect inspection. But sometimes the inspection may not be free of inspection errors. In this paper, we develop MDS-plan by attribute to the state where misclassification errors exist during the inspection. In ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 133 3 شماره
صفحات -
تاریخ انتشار 2010